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Numerical simulation of natural convection in a concentric annulus between a square outer
cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based
lattice Boltzmann method
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In this paper, natural convective heat transfer in a horizontal concentric annulus between a square outer
cylinder and a heated circular inner cylinder is numerically studied using the Taylor-series-expansion and
least-squares-based lattice Boltzmann metfidd.BM ). The TLLBM is used to extend the current thermal
model to more practical applications. Since the TLLBM is basically a meshless approach and can be applied to
any complex geometry, we can easily use it to solve the complex thermal problem accurately and effectively.
The present method is validated by comparing its numerical results with available data in the literature, and
very good agreement has been achieved.
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I. INTRODUCTION is an efficient and flexible approach for practical applica-
tions.

The lattice Boltzmann methodBM ) has been developed Due to the same reason as in the isothermal flow and the
into an attractive numerical scheme in the last ten ygars ~ complexity of the thermal problem itself, the current thermal
However, it lags behind conventional computational fluid dy-LBM is restricted to the regular grid, which hinders its ap-
namics methods for the simulation of fluid flows in realisti- Plication to practical problems such as natural convection in
cally complicated geometries. Various methods have beefi! €nclosed space. In practice, the flow and thermal fields in
proposed to remedy this unsatisfactory state of affairs. So faflifferent kinds of enclosed space are of great importance due
there are mainly two ways to improve the standard LBm.©© thelr_W|de apphcajuons such asin solar _colle(_:tor receivers,
One is based on the discrete Boltzmann equation, which i sulation and flooding protection for buried pipes used for

solved by using traditional finite-difference methf@] and istrict heating and cooling, qoollng systems in nyclear_reac-
. ; tors, etc. A large number of literatures were published in the
finite-volume method3—8] on the general coordinate sys-

. . . . few for this kind of problems. For concentri
tem. The other one is the time-dependent interpolatio ast few decades for this kind of problems. For concentric

h by adheri he L ian § fthe LBE. Thi nd eccentric cases in a horizontal annulus between two cir-
scheme by adhering to the Lagrangian form of the LBE. This, 15¢ cylinders, the flow and thermal fields have been well

scheme was proposed by lgeal.[9]. It has been shown that  g4,qied. Comparatively, little work has been conducted in
both ways are successful in simulating different fluid systemsy,ore complex domains, such as the annulus between a
on complex geometries. However, the finite-volume LBMsquare outer cylinder and a circular inner cylinder. In this
and finite-difference LBM have the disadvantage of numeri'paper, we will ShOW that the Tay'or-series-expansion and
cal diffusion. The interpolation-supplemented LBH model least-squares-based LBKTLLBM) together with the cur-
successfully overcomes the above shortcoming by preservingnt thermal model can provide very accurate results for
the time accuracy of the traditional LBE. The price to pay isthese kinds of complex thermal problems.
the need of interpolation between the spatial grid and particle
positions. To avoid spurious numerical viscosity, a second- Il. METHODOLOGY
order upwind interpolation scheme is used. This model has
proved its viability for a two-dimensional flow past a cylin-
der using cylindrical coordinates, at both low and high Rey- The TLLBM is based on the well-known fact that the
nolds numbers. However, it has an extra computational effortlistribution function is a continuous function in physical
for interpolation at every time step, and it also has a strickpace and can be well defined in any mesh system. The de-
restriction on the selection of interpolation points, which re-tails of the TLLBM can be found if10]. A basic description
quires upwind 9 points for two-dimensional problems andof the TLLBM is given below.
upwind 27 points for three-dimensional problems if a struc- The two-dimensional, standard LBE with BGK approxi-
tured mesh is used. mation can be written as

In order to implement the LBE more efficiently for flows
with arbitrary geometry, a version of the LBM, which is fi(X+e€ixdt,y+ejydt,t+ot)
based on the standard LBM, the well-known Taylor-series- e
ex i - fio(x7y1t)_fi(xly7t)

pansion and least-squares approach, was proposed by Shu =f.(x,y,t)+ ,
et al. [10]. The final form is an algebraic formulation, in (7+6t/2)
which the coefficients only depend on the coordinates of i=0.1,...N 1)
mesh points and lattice velocity, and can be computed in ” ’
advance. This method is also free of lattice models. Numeriwhere 7 is the single relaxation time, the extra terdt/2
cal experiments on isothermal flows showed that this methoddded tor compensates for the leading-order truncation error

A. Taylor-series expansion and least-squares-based LBM
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c’ E' H where Axa=Xa+ € 6t—Xxp and Ay,=y,+e€;,t—yp. For

the two-dimensional case, this expansion involves six un-
C 4B'|E 4 P'[H_ knowns: that is, one distribution function at the time level
t+ 6t, two first order derivatives, and three second-order de-
B p G rivatives. To solve for these unknowns, six equations are
A’ D’ F' needed to close the system. This can be done by applying
the second-order Taylor series expansion at six points:
4 D F P,A,B,C,D,E As shown in[10], the following equation sys-
tem can be obtained:

FIG. 1. Configuration of particle movement along thdirec-

tion.
6

during the Chapman-Enskog expansibnis the distribution f&={sk}T{W}=JZl s¢,jW;, k=P,A,B,C,D,E, (4
function along thd direction, f{is its corresponding equi-
librium state, 6t is the time stepg (e, e;,) is the particle

velocity in thei direction, andN is the number of discrete where
particle velocities. ) .
Suppose that a particle is initially at the grid poirty,b. fe=fi Yo D HLF GG YO ) = Tl i DI 7+ 612,
Along thei direction, this particle will stream to the position
(xt+eyot,y+eydtt+4t). For a uniform lattice, ox {sT={1AX, Ay, (AX)%2,(Ay )12 AX Ay,

=g ot and dy=e;,ot. So (x+edt,y+eydt) is on the
grid point. In other words, Eq1) can be used to update the
distribution functions exactly at the grid points. However, for
a nonuniform grid, X+ e;,dt,y + €, 6t) is usually not at the . _ .
grid point (x+ 8x,y+ dy). In the numerical simulation, only Our target is to find the first elemew,= f;(P,t+ dt).
the distribution function at the mesh points for all time levelsEquation systent4) can be put into the following matrix
is needed, so that the macroscopic properties such as tfferm:

density, flow velocity, and temperature can be evaluated at

{WL={f,,0f; lox,0f, 19y, 0%F;19x2,0°F;19%y,0°F; 1 9x oy} .

every mesh point. To get the distribution function at the grid [SH{W}={f"}. (5
point (x+ 6x,y+ 6y) and the time level+ ot, the Taylor
series expansion in the spatial direction is applied. In practical applications, it was found that the mafi8}

As shown in Fig. 1, for simplicity, the poim represents  might be singular or ill conditioned using only six points
the grid point &a,ya,t), point A" represents the position (p A B .C,D,B. To overcome this difficulty and make the
(Xat € St,yat ey dt,t+6t), and pointP represent the po-  method more general, more points are added and the least-
sition (Xp,yp,t+ 6t) with Xxp=X+ 6x andyp=ya+dy. SO squares approadi1] was introduced to optimize the over-
Eq. (1) gives constrained approximation by E¢(p). As a result, the equa-

f(A ) =F,(AD+ YA D—F(AD  (2) tion system fo{W} becomes

For the general casé)’ may not coincide with the mesh {Wh=([SI"[S)[SI{f'}=[AN{f'}. (6)
point P. We truncate the Taylor series expansion to the

second-order derivative terms. $dA’,t+ 6t) can be ap- From Eq.(6), we can have

proximated by the corresponding function and its derivatives

at the mesh poinP as M
af (P,t+ 8t) fi(Xo,Yo,t+ 8 =Wy =2, ayfy, @)
fi(A" 1+ 80 = fi(P,t+ 6) + Axp——— —— k=1
af (P, t+ ot) wherea, , are the elements of the first row of the mafi,
Ayp 5 which is determined by the coordinates of mesh points, the
y particle velocity, and time step size, and will not be changed
1 92f,(P,t+ ot) in the calculation procedurdd is the number of the points
+ E(AXA)zT used and should be greater than 6. In the present study, a
structured grid is used, and is taken as 9. This means that
*f(P,t+ 6t) for a reference mesh poiR, we need to select its eight
+ E(AyA ZT neighboring points to compute the coefficients in Ef).
y . . o ;
Figure 1 shows the actual point distribution used in the
J%f(P,t+ 6t) present study. Although it is illustrated along the particle
+AXAAyAW direction of 45°, the point distribution shown in Fig. 1 can be
applied to other particle directions including the horizontal
+O[(Axa)3,(Ay)%], 3 and vertical directions. We can calculate the coefficients in
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Eq. (7) once and store them in advance, so little computa- . St St

tional effort is introduced as compared with the standard gizgi+;(9i—gieq)+ EfiQi-

LBE. On the other hand, Eq7) has nothing to do with the ¢

mesh structure. It only needs the information of coordinates 1

of the mesh points. Thus we can say that EQ. can be gi=(e—=V):|=(=Vp+V-II)+(e—V)-VV]|.
consistently used to any kind of mesh structure. But we have p

to indicate that, as compared to the standard LBE, therhen the macroscopic density.
present method requires much more memory to store th@an be calculated by ’
coefficientsa, ..

velocity, and internal energy

p=2 fi, (129

B. Thermal model 7

A thermal model was proposed by téeal.[12] recently.

This model ir_1troduces an internal energy density distributio_n pV= 2 Qf_i+ pG 5t’ (12h)
function to simulate the temperature field. The macroscopic i 2

density and velocity fields are still simulated using the den-

sity distribution function. The details of this thermal model _ ot

can be found if12]. A basic description is given below. PSZEI: 9i— ?2. fiai. (129

The density distribution function and energy density dis-
tribution function satisfy the following equations, respec-In this paper, the same nine-speed model is used p&2in
tively: The kinematic viscosityv is related to the first relaxation
eq time by v=7,RT, and the thermal diffusivity is related to
fi—f; CE (g the second relaxation time by=7RT
T v When this thermal model is implemented for flows with
arbitrary geometry, Eqs(10) and (11) cannot be used di-
g — gt rectly. In order to solve this problem, by applying the Taylor-
—fi(g—V)-[V+(g-V)V], series-expansion and least-squares approaches to these two
equations, we can get
©) .

where fi(xo.yo,t+00)=Vi= 2, aydy, (13)
k=1

afi+ (e V)=~

gi+(g-V)gi=—

_G-(g—V)
~  RT

M

Fi — ’ r 7
gi<xo,yo,t+5t)=v1=k§1 argn (14

fed

andG is the external force acting on the unit mass. By adopt-Where

ing a second-order strategy to integrate the above two equa-

tions, one can get _ St
N f= 1—m)fi(xk,w,a t)
fI(X+Qﬁt,t+ &)_ﬁ(X,t):—m[fl(X,t) + 6t feu(x t)+ TVFiét
. 7, + 056t @ VS VT TS Bt
_te i
O]+ ot _ 5t
(10 Ok= 1—m)gi(xk,yk,a 1)
_ _ 7.fiQ; 6t
i + 5t1 1t+é\t_ i ’ yt P — O ——CI !
gi(x+gat,e,t+t)-gi(x.q.1) 080t Se X Y8 DT e
ot _
T rosatldixe.D-gr(xe, 1] (V'Y ={gi,g:/ax,d9; 19y, g, 192,
e 9°g;19%y,0°g; 1 9x ay}".
—mfi(x,e. 1a(xe,t)at, (11

When we choose the same patrticle velocity model and the
same surrounding points, the geometric matrideand A’

are the same for both the density distribution function and
energy density distribution function, which can save both
computational time and storage space. In this paper, we
choose the same nine-speed model and the same eight sur-

where

— ot ot
fi=fi+ z_n(fi_ffq)_?Fiv
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mal diffusivity are determined through the two dimension-
E less numberdNp, and Ng,, respectively. By using the rela-
) tionship between the kinematic viscosity, the thermal
é diffusivity, and the two relaxation times, the two relaxation
times 7, and 7, can be easily determined.
Generally speaking, the problem of formulating boundary
n conditions within the LBE formalism consists of finding an
appropriate relation, which expresses the incoming from out-
L side environment to the flow fieldinknown as a function of
the outgoing from the flow field to the outside environment
(known). The bounce-back rule of the nonequilibrium distri-
bution is such a way and is used here to determine the un-
knowns from the known functions. As shown in Rgf2],
for isothermal problems, the following hydrodynamic bound-
ary condition for the density distribution function can be
used:

fneq,isoz fneq,iso (16)
FIG. 2. Sketch of the physical domain. “ P

wherea and 8 have the opposite directioy, represents out-

going direction, andy represents the corresponding opposite
incoming direction. For thermal problems, the thermody-
namic Dirichlet boundary condition can be represented by

IIl. SIMULATION OF NATURAL CONVECTION IN A the energy density distribution function, which is written as
CONCENTRIC ANNULUS BETWEEN AN OUTER SQUARE

CYLINDER AND AN INNER CIRCULAR CYLINDER

rounding points for a reference mesh pdito compute the
coefficients in Eqs(13) and (14), respectively.

neq_ ,2fneq,isa_ _ (~Neq_ ~2 ¢neq,is
A. Problem definition and boundary condition 9o —€afa (gﬁ eﬁfﬁ ). (17)

A schematic view of a honzontal concentric a\_nnulus_be-smce the density distribution in the LBE thermal model does
tween a square outer cylinder and a heated circular inner . o .
not take into account the temperature variation, its nonequi-

Cfinder 5 shoun 0 g, 2 e 15 qenerted unlo yum art e te boutoay condia and iy
y ’ P the role of f"€9'5%in the boundary conditio17).

cally within the cold square cylinder. For the present compu- For the inner circular cylinder, the outgoing population at

tation, a nonuniform mesh is used, where mesh points arg | oundary ooint can be determined by the condition of
stretched near the wall to capture the thin boundary layer. In y pol y
e-n<0, wheren is the outward vector normal to the bound-

the middle part of the flow field, the mesh is relatively coarse ry. Incoming populations are defined by the condition of

since the velocity and temperature gradients are not Verg-HZO. For the outer square cylinder, the outgoing popula-

large in this region. . . i . )
Based on the Boussinesq approximation, the effective e>§-'°ns. are deflne_d by the and't'on ofn>0, while the n-
ternal force can be written as coming _populathns are defined bynsO._For the outgoing
distributions, their values can be determined by E#3) and
] (14). In contrast, the incoming distributions are determined
pPG=pBYo(T—Tn)j, (15 by the boundary conditiond.6) and(17). Some other imple-
mentation of boundary conditions on the curved boundary

whereg is the thermal expansion coefficiegy is the accel- .51 be found in the work of Mest al. [13].

eration due to gravity, andis the vertical direction opposite

to that of gravity.T,,=(T;+T,)/2 is the average tempera-

ture, in whichT; is the temperature on the innérot) wall B. Definition of Nusselt numbers

and T, is the temperature on the outécold) wall. The The local heat transfer rate on the inner cylinder can be
prandtl number is defined a¥p=v/y, and the Rayleigh computed by

number is defined aNg,= BATgoL%/vy.

For the natural convection problem;BgoATL is the aT*
characteristic velocity, wherdAT=T;—T,. To ensure the q=h(T{ -T)=—k (19

code working properly in the near-incompressible regime, an

we carefully choose the value qfBgo,ATL. It is chosen to

be 0.k at low Rayleigh number and 0.¢%t high Rayleigh whereT* is the dimensional temperaturg; and T} are,
number. This means that the Mach number is 0.1 at lowespectively, the temperature on the inner and outer whalls,
Rayleigh number and 0.15 at high Rayleigh number. Onceepresents the local heat transfer coefficient, &nd the
BYoATL is determined, the kinematic viscosity and the ther-thermal conductivityk=pcpx. From Eq.(18), we can get
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TABLE |. Comparison ONNU.
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solved the Navier-Stokes equations in a body-fitted coordi-
nate system using a control volume-based numerical proce-

Niu dure. Their numerical data were validated by comparison
shuand  Moukalled and with some experimental data and found to be in good agree-
ment. Recently, the global method of differential quadrature
Cases It Nra Present Zhu[15] Acharya[14] (DQ) was applied by Shu and ZH&5] to simulate this natu-
1 5.0 1d 2.08 2.08 2.071 ral convection problem. Their work consists of the numerical
2 25 3.24 3.24 3.331 results for Rayleigh numbers ranging from*1® 16 and
3 1.67 5.39 5.40 5.826 aspect ratios between 1.67 and 5.0. So in this study, both the
4 5.0 16 3.79 3.79 3.825 results of Moukalled and Acharyd4] and the results of Shu
5 2.5 4.84 4.86 5.08 and Zhu[15] are used to validate the present numerical re-
6 167 6.20 6.21 6.212 sults. The average Nusselt numbakg, calculated by three
7 50 16 5.96 6.11 6.107 different methods are compared in Table | for Rayleigh num-
8 25 8.75 8.90 9.374 bers of 16, 1¢°, and 16 and aspect ratios of 5.0, 2.5, and
9 1.67 11.65 12.00 11.62 1.67. It is noted that the reference length used in the Ray-
leigh number is the side length of the square cylindefhe
mesh size used in the present study is, respectively, 101
aT X161 for Ng,=10%, 129x201 for Ng,=10°, and 251
h=—-k—. (19 it :
an x 321 forNg,=10°. From Table I, it can be seen that at low

Rayleigh numbers of T0and 13, the three results compare

HereT is the nondimensional temperature, which is definedvery well with each other. And at high Rayleigh number of
as T=(T*—T*)/(TF¥—T*) and 4T/an is the temperature 10°, there are some deviations between the present results

gradient in the direction normal to the boundary.

and the reference data. But the maximum difference is within

Since at steady state the Nusselt numbers along the innér5%. So we can say that the present results are very accu-

and outer walls are the same, there is no need to pay separ&@ée, and the present method can be used to solve complex
attention to the average Nusselt numbers for the outer andermal problems accurately and effectively. _
inner boundaries. The average Nusselt numbers for the inner The flow and thermal fields for these nine cases are iden-

boundary is determined by

_ Fs_ﬁ

Nu=" = 7S (20

tical to those described previously [ih5], which will not be
repeated here.

IV. CONCLUSIONS

In this paper, the Taylor-series-expansion and least-

whereSiis defined as half of the circumferential lengths of Squares-based lattice Boltzmann method was employed to
the inner cylinder surface due to the symmetry, in the samé&xtend the current thermal model to study the natural con-

way as in the work of Moukalled and Acharya4] for com-

parison, and is the average heat flux across the boundary.

C. Validation of numerical results

vection in a horizontal concentric annulus between a square
outer cylinder and a circular inner cylinder, which is a com-
plex thermal flow problem. Numerical results for Rayleigh
numbers range from f0to 10° and aspect ratios between
1.67 and 5.0 are presented, which agree well with available

As discussed before, most research work has focused afata in the literature. It is also found in this study that both
the study of natural convection in annuli between either conthe aspect ratio and the Rayleigh number are critical to the
centric or eccentric circular cylinders. Only a few publica- patterns of flow and thermal fields as shown [itB]. It
tions involved the study of natural convection in an annulusshould be indicated that the TLLBM used in this paper is
between an outer square cylinder and an inner circular cylbasically a meshless approach and can be easily applied to
inder. The work of Moukalled and Acharya4] and Shu and any complex geometry and nonuniform grid. It is applicable

Zhu[15] is among such studies. Moukalled and Achdri/4]

for different physical domains including the eccentric case.
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