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Numerical simulation of natural convection in a concentric annulus between a square outer
cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based

lattice Boltzmann method

Y. Peng, Y. T. Chew, and C. Shu
Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
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In this paper, natural convective heat transfer in a horizontal concentric annulus between a square outer
cylinder and a heated circular inner cylinder is numerically studied using the Taylor-series-expansion and
least-squares-based lattice Boltzmann method~TLLBM !. The TLLBM is used to extend the current thermal
model to more practical applications. Since the TLLBM is basically a meshless approach and can be applied to
any complex geometry, we can easily use it to solve the complex thermal problem accurately and effectively.
The present method is validated by comparing its numerical results with available data in the literature, and
very good agreement has been achieved.
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I. INTRODUCTION

The lattice Boltzmann method~LBM ! has been develope
into an attractive numerical scheme in the last ten years@1#.
However, it lags behind conventional computational fluid d
namics methods for the simulation of fluid flows in realis
cally complicated geometries. Various methods have b
proposed to remedy this unsatisfactory state of affairs. So
there are mainly two ways to improve the standard LB
One is based on the discrete Boltzmann equation, whic
solved by using traditional finite-difference method@2# and
finite-volume method@3–8# on the general coordinate sy
tem. The other one is the time-dependent interpolat
scheme by adhering to the Lagrangian form of the LBE. T
scheme was proposed by Heet al. @9#. It has been shown tha
both ways are successful in simulating different fluid syste
on complex geometries. However, the finite-volume LB
and finite-difference LBM have the disadvantage of nume
cal diffusion. The interpolation-supplemented LBE@9# model
successfully overcomes the above shortcoming by preser
the time accuracy of the traditional LBE. The price to pay
the need of interpolation between the spatial grid and part
positions. To avoid spurious numerical viscosity, a seco
order upwind interpolation scheme is used. This model
proved its viability for a two-dimensional flow past a cylin
der using cylindrical coordinates, at both low and high Re
nolds numbers. However, it has an extra computational ef
for interpolation at every time step, and it also has a st
restriction on the selection of interpolation points, which
quires upwind 9 points for two-dimensional problems a
upwind 27 points for three-dimensional problems if a stru
tured mesh is used.

In order to implement the LBE more efficiently for flow
with arbitrary geometry, a version of the LBM, which
based on the standard LBM, the well-known Taylor-seri
expansion and least-squares approach, was proposed b
et al. @10#. The final form is an algebraic formulation, i
which the coefficients only depend on the coordinates
mesh points and lattice velocity, and can be computed
advance. This method is also free of lattice models. Num
cal experiments on isothermal flows showed that this met
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is an efficient and flexible approach for practical applic
tions.

Due to the same reason as in the isothermal flow and
complexity of the thermal problem itself, the current therm
LBM is restricted to the regular grid, which hinders its a
plication to practical problems such as natural convection
an enclosed space. In practice, the flow and thermal field
different kinds of enclosed space are of great importance
to their wide applications such as in solar collector receive
insulation and flooding protection for buried pipes used
district heating and cooling, cooling systems in nuclear re
tors, etc. A large number of literatures were published in
past few decades for this kind of problems. For concen
and eccentric cases in a horizontal annulus between two
cular cylinders, the flow and thermal fields have been w
studied. Comparatively, little work has been conducted
more complex domains, such as the annulus betwee
square outer cylinder and a circular inner cylinder. In th
paper, we will show that the Taylor-series-expansion a
least-squares-based LBM~TLLBM ! together with the cur-
rent thermal model can provide very accurate results
these kinds of complex thermal problems.

II. METHODOLOGY

A. Taylor-series expansion and least-squares-based LBM

The TLLBM is based on the well-known fact that th
distribution function is a continuous function in physic
space and can be well defined in any mesh system. The
tails of the TLLBM can be found in@10#. A basic description
of the TLLBM is given below.

The two-dimensional, standard LBE with BGK approx
mation can be written as

f i~x1eixdt,y1eiydt,t1dt !

5 f i~x,y,t !1
f i

eq~x,y,t !2 f i~x,y,t !

~t1dt/2!
,

i 50,1, . . . ,N, ~1!

where t is the single relaxation time, the extra termdt/2
added tot compensates for the leading-order truncation er
©2003 The American Physical Society01-1
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during the Chapman-Enskog expansion,f i is the distribution
function along thei direction, f i

eq is its corresponding equi
librium state,dt is the time step,ei(eix ,eiy) is the particle
velocity in the i direction, andN is the number of discrete
particle velocities.

Suppose that a particle is initially at the grid point~x,y,t!.
Along thei direction, this particle will stream to the positio
(x1eixdt,y1eiydt,t1dt). For a uniform lattice, dx
5eixdt and dy5eiydt. So (x1eixdt,y1eiydt) is on the
grid point. In other words, Eq.~1! can be used to update th
distribution functions exactly at the grid points. However, f
a nonuniform grid, (x1eixdt,y1eiydt) is usually not at the
grid point (x1dx,y1dy). In the numerical simulation, only
the distribution function at the mesh points for all time leve
is needed, so that the macroscopic properties such as
density, flow velocity, and temperature can be evaluate
every mesh point. To get the distribution function at the g
point (x1dx,y1dy) and the time levelt1dt, the Taylor
series expansion in the spatial direction is applied.

As shown in Fig. 1, for simplicity, the pointA represents
the grid point (xA ,yA ,t), point A8 represents the positio
(xA1eixdt,yA1eiydt,t1dt), and pointP represent the po
sition (xP ,yP ,t1dt) with xP5xA1dx andyP5yA1dy. So
Eq. ~1! gives

f i~A8,t1dt !5 f i~A,t !1 b f i
eq~A,t !2 f i~A,t !c/t. ~2!

For the general case,A8 may not coincide with the mes
point P. We truncate the Taylor series expansion to
second-order derivative terms. Sof i(A8,t1dt) can be ap-
proximated by the corresponding function and its derivati
at the mesh pointP as

f i~A8,t1dt !5 f i~P,t1dt !1DxA

] f i~P,t1dt !

]x

1DyA

] f i~P,t1dt !

]y

1
1

2
~DxA!2

]2f i~P,t1dt !

]x2

1
1

2
~DyA!2

]2f i~P,t1dt !

]y2

1DxADyA

]2f i~P,t1dt !

]x ]y

1O@~DxA!3,~DyA!3#, ~3!

FIG. 1. Configuration of particle movement along thei direc-
tion.
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whereDxA5xA1eixdt2xP and DyA5yA1eiydt2yP . For
the two-dimensional case, this expansion involves six
knowns: that is, one distribution function at the time lev
t1dt, two first order derivatives, and three second-order
rivatives. To solve for these unknowns, six equations
needed to close the system. This can be done by appl
the second-order Taylor series expansion at six poi
P,A,B,C,D,E. As shown in@10#, the following equation sys-
tem can be obtained:

f k85$sk%
T$W%5(

j 51

6

sk, jWj , k5P,A,B,C,D,E, ~4!

where

f k85 f i~xk ,yk ,t !1 b f i
eq~xk ,yk ,t !2 f i~xk ,yk ,t !c/t1dt/2,

$sk%
T5$1,Dxk ,Dyk ,~Dxk!

2/2,~Dyk!
2/2,DxkDyk%,

$W%5$ f i ,] f i /]x,] f i /]y,]2f i /]x2,]2f i /]2y,]2f i /]x ]y%T.

Our target is to find the first elementW15 f i(P,t1dt).
Equation system~4! can be put into the following matrix
form:

@S#$W%5$ f 8%. ~5!

In practical applications, it was found that the matrix@S#
might be singular or ill conditioned using only six poin
~P,A,B,C,D,E!. To overcome this difficulty and make th
method more general, more points are added and the le
squares approach@11# was introduced to optimize the ove
constrained approximation by Eq.~5!. As a result, the equa
tion system for$W% becomes

$W%5~@S#T@S# !21@S#T$ f 8%5@A#$ f 8%. ~6!

From Eq.~6!, we can have

f i~x0 ,y0 ,t1dt !5W15 (
k51

M

a1,kf k8 , ~7!

wherea1,k are the elements of the first row of the matrix@A#,
which is determined by the coordinates of mesh points,
particle velocity, and time step size, and will not be chang
in the calculation procedure.M is the number of the points
used and should be greater than 6. In the present stud
structured grid is used, andM is taken as 9. This means tha
for a reference mesh pointP, we need to select its eigh
neighboring points to compute the coefficients in Eq.~7!.
Figure 1 shows the actual point distribution used in t
present study. Although it is illustrated along the partic
direction of 45°, the point distribution shown in Fig. 1 can
applied to other particle directions including the horizon
and vertical directions. We can calculate the coefficients
1-2
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Eq. ~7! once and store them in advance, so little compu
tional effort is introduced as compared with the stand
LBE. On the other hand, Eq.~7! has nothing to do with the
mesh structure. It only needs the information of coordina
of the mesh points. Thus we can say that Eq.~7! can be
consistently used to any kind of mesh structure. But we h
to indicate that, as compared to the standard LBE,
present method requires much more memory to store
coefficientsa1,k .

B. Thermal model

A thermal model was proposed by Heet al. @12# recently.
This model introduces an internal energy density distribut
function to simulate the temperature field. The macrosco
density and velocity fields are still simulated using the d
sity distribution function. The details of this thermal mod
can be found in@12#. A basic description is given below.

The density distribution function and energy density d
tribution function satisfy the following equations, respe
tively:

] t f i1~ei•“ ! f i52
f i2 f i

eq

tn
1Fi , ~8!

] tgi1~ei•“ !gi52
gi2gi

eq

tc
2 f i~ei2V!•@] tV1~ei•“ !V#,

~9!

where

Fi5
G•~ei2V!

RT
f i

eq

andG is the external force acting on the unit mass. By ado
ing a second-order strategy to integrate the above two e
tions, one can get

f̄ i~x1eidt,t1dt !2 f̄ i~x,t !52
dt

tn10.5dt
@ f̄ i~x,t !

2 f i
eq~x,t !#1

tnFidt

tn10.5dt
,

~10!

ḡi~x1eidt,ei ,t1dt !2ḡi~x,ei ,t !

52
dt

tc10.5dt
@ ḡi~x,ei ,t !2gi

eq~x,ei ,t !#

2
tc

tc10.5dt
f i~x,ei ,t !q~x,ei ,t !dt, ~11!

where

f̄ i5 f i1
dt

2tn
~ f i2 f i

eq!2
dt

2
Fi ,
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ḡi5gi1
dt

2tc
~gi2gi

eq!1
dt

2
f iqi ,

qi5~ei2V!•F1

r
~2“p1“•P!1~ei2V!•“VG .

Then the macroscopic density, velocity, and internal ene
can be calculated by

r5(
i

f̄ i , ~12a!

rV5(
i

ei f̄ i1
rG dt

2
, ~12b!

r«5(
i

ḡi2
dt

2 (
i

f iqi . ~12c!

In this paper, the same nine-speed model is used as in@12#.
The kinematic viscosityy is related to the first relaxation
time by y5tnRT, and the thermal diffusivityx is related to
the second relaxation time byx5tcRT

When this thermal model is implemented for flows wi
arbitrary geometry, Eqs.~10! and ~11! cannot be used di-
rectly. In order to solve this problem, by applying the Taylo
series-expansion and least-squares approaches to thes
equations, we can get

f̄ i~x0 ,y0 ,t1dt !5V15 (
k51

M

a1,kf k8, ~13!

gi~x0 ,y0 ,t1dt !5V185 (
k51

M

a1,k8 gk8, ~14!

where

f k85S 12
dt

tn10.5dt D f i~xk ,yk ,ei ,t !

1
dt

tn10.5dt
f a

eq~xk ,yk ,ei ,t !1
tnFidt

tn10.5dt
,

gk85S 12
dt

tc10.5dt Dgi~xk ,yk ,ei ,t !

1
dt

tc10.5dt
ga

eq~xk ,yk ,ei ,t !2
tcf iqidt

tc10.5dt
,

$V8%5$gi ,]gi /]x,]gi /]y,]2gi /]x2,

]2gi /]2y,]2gi /]x ]y%T.

When we choose the same particle velocity model and
same surrounding points, the geometric matricesA and A8
are the same for both the density distribution function a
energy density distribution function, which can save bo
computational time and storage space. In this paper,
choose the same nine-speed model and the same eigh
1-3
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rounding points for a reference mesh pointP to compute the
coefficients in Eqs.~13! and ~14!, respectively.

III. SIMULATION OF NATURAL CONVECTION IN A
CONCENTRIC ANNULUS BETWEEN AN OUTER SQUARE

CYLINDER AND AN INNER CIRCULAR CYLINDER

A. Problem definition and boundary condition

A schematic view of a horizontal concentric annulus b
tween a square outer cylinder and a heated circular in
cylinder is shown in Fig. 2. Heat is generated uniform
within the circular inner cylinder, which is placed concent
cally within the cold square cylinder. For the present com
tation, a nonuniform mesh is used, where mesh points
stretched near the wall to capture the thin boundary laye
the middle part of the flow field, the mesh is relatively coa
since the velocity and temperature gradients are not v
large in this region.

Based on the Boussinesq approximation, the effective
ternal force can be written as

rG5rbg0~T2Tm!j , ~15!

whereb is the thermal expansion coefficient,g0 is the accel-
eration due to gravity, andj is the vertical direction opposite
to that of gravity.Tm5(Ti1To)/2 is the average tempera
ture, in whichTi is the temperature on the inner~hot! wall
and To is the temperature on the outer~cold! wall. The
prandtl number is defined asNPr5y/x, and the Rayleigh
number is defined asNRa5bDTg0L3/yx.

For the natural convection problem,Abg0DTL is the
characteristic velocity, whereDT5Ti2To . To ensure the
code working properly in the near-incompressible regim
we carefully choose the value ofAbg0DTL. It is chosen to
be 0.1c at low Rayleigh number and 0.15c at high Rayleigh
number. This means that the Mach number is 0.1 at
Rayleigh number and 0.15 at high Rayleigh number. O
bg0DTL is determined, the kinematic viscosity and the th

FIG. 2. Sketch of the physical domain.
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mal diffusivity are determined through the two dimensio
less numbersNPr and NRa, respectively. By using the rela
tionship between the kinematic viscosity, the therm
diffusivity, and the two relaxation times, the two relaxatio
timestn andtc can be easily determined.

Generally speaking, the problem of formulating bounda
conditions within the LBE formalism consists of finding a
appropriate relation, which expresses the incoming from o
side environment to the flow field~unknown! as a function of
the outgoing from the flow field to the outside environme
~known!. The bounce-back rule of the nonequilibrium dist
bution is such a way and is used here to determine the
knowns from the known functions. As shown in Ref.@12#,
for isothermal problems, the following hydrodynamic boun
ary condition for the density distribution function can b
used:

f a
neq,iso5 f b

neq,iso, ~16!

wherea andb have the opposite direction,b represents out-
going direction, anda represents the corresponding oppos
incoming direction. For thermal problems, the thermod
namic Dirichlet boundary condition can be represented
the energy density distribution function, which is written a

ga
neq2ea

2 f a
neq,iso52~gb

neq2eb
2 f b

neq,iso!. ~17!

Since the density distribution in the LBE thermal model do
not take into account the temperature variation, its noneq
librium part satisfies the boundary condition~16! and plays
the role of f neq,isoin the boundary condition~17!.

For the inner circular cylinder, the outgoing population
a boundary point can be determined by the condition
e•n,0, wheren is the outward vector normal to the boun
ary. Incoming populations are defined by the condition
e•n>0. For the outer square cylinder, the outgoing popu
tions are defined by the condition ofe•n.0, while the in-
coming populations are defined bye•n<0. For the outgoing
distributions, their values can be determined by Eqs.~13! and
~14!. In contrast, the incoming distributions are determin
by the boundary conditions~16! and~17!. Some other imple-
mentation of boundary conditions on the curved bound
can be found in the work of Meiet al. @13#.

B. Definition of Nusselt numbers

The local heat transfer rate on the inner cylinder can
computed by

q5h~Ti* 2To* !52k
]T*

]n
, ~18!

where T* is the dimensional temperature,Ti* and To* are,
respectively, the temperature on the inner and outer wallh
represents the local heat transfer coefficient, andk is the
thermal conductivity,k5rcpx. From Eq.~18!, we can get
1-4
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h52k
]T

]n
. ~19!

HereT is the nondimensional temperature, which is defin
as T5(T* 2To* )/(Ti* 2To* ) and ]T/]n is the temperature
gradient in the direction normal to the boundary.

Since at steady state the Nusselt numbers along the i
and outer walls are the same, there is no need to pay sep
attention to the average Nusselt numbers for the outer
inner boundaries. The average Nusselt numbers for the i
boundary is determined by

N̄Nu5
h̄S

k
5

]T

]n
S, ~20!

whereS is defined as half of the circumferential lengths
the inner cylinder surface due to the symmetry, in the sa
way as in the work of Moukalled and Acharya@14# for com-
parison, andh̄ is the average heat flux across the bounda

C. Validation of numerical results

As discussed before, most research work has focuse
the study of natural convection in annuli between either c
centric or eccentric circular cylinders. Only a few public
tions involved the study of natural convection in an annu
between an outer square cylinder and an inner circular
inder. The work of Moukalled and Acharya@14# and Shu and
Zhu @15# is among such studies. Moukalled and Acharya@14#

TABLE I. Comparison ofN̄Nu.

Cases rr N Ra

N̄Nu

Present
Shu and
Zhu @15#

Moukalled and
Acharya@14#

1 5.0 104 2.08 2.08 2.071
2 2.5 3.24 3.24 3.331
3 1.67 5.39 5.40 5.826
4 5.0 105 3.79 3.79 3.825
5 2.5 4.84 4.86 5.08
6 1.67 6.20 6.21 6.212
7 5.0 106 5.96 6.11 6.107
8 2.5 8.75 8.90 9.374
9 1.67 11.65 12.00 11.62
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solved the Navier-Stokes equations in a body-fitted coo
nate system using a control volume-based numerical pro
dure. Their numerical data were validated by comparis
with some experimental data and found to be in good ag
ment. Recently, the global method of differential quadrat
~DQ! was applied by Shu and Zhu@15# to simulate this natu-
ral convection problem. Their work consists of the numeri
results for Rayleigh numbers ranging from 104 to 106 and
aspect ratios between 1.67 and 5.0. So in this study, both
results of Moukalled and Acharya@14# and the results of Shu
and Zhu@15# are used to validate the present numerical

sults. The average Nusselt numbersN̄Nu calculated by three
different methods are compared in Table I for Rayleigh nu
bers of 104, 105, and 106 and aspect ratios of 5.0, 2.5, an
1.67. It is noted that the reference length used in the R
leigh number is the side length of the square cylinder,L. The
mesh size used in the present study is, respectively,
3161 for NRa5104, 1293201 for NRa5105, and 251
3321 forNRa5106. From Table I, it can be seen that at lo
Rayleigh numbers of 104 and 105, the three results compar
very well with each other. And at high Rayleigh number
106, there are some deviations between the present re
and the reference data. But the maximum difference is wit
2.5%. So we can say that the present results are very a
rate, and the present method can be used to solve com
thermal problems accurately and effectively.

The flow and thermal fields for these nine cases are id
tical to those described previously in@15#, which will not be
repeated here.

IV. CONCLUSIONS

In this paper, the Taylor-series-expansion and lea
squares-based lattice Boltzmann method was employe
extend the current thermal model to study the natural c
vection in a horizontal concentric annulus between a squ
outer cylinder and a circular inner cylinder, which is a com
plex thermal flow problem. Numerical results for Rayleig
numbers range from 104 to 106 and aspect ratios betwee
1.67 and 5.0 are presented, which agree well with availa
data in the literature. It is also found in this study that bo
the aspect ratio and the Rayleigh number are critical to
patterns of flow and thermal fields as shown in@15#. It
should be indicated that the TLLBM used in this paper
basically a meshless approach and can be easily applie
any complex geometry and nonuniform grid. It is applicab
for different physical domains including the eccentric cas
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